منابع مشابه
An Iterative Scheme for Solving Nonlinear Equations with Monotone Operators
An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posterior...
متن کاملDynamical systems method for solving nonlinear equations with monotone operators
A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear equations with monotone operators in a Hilbert space is studied in this paper. An a posteriori stopping rule, based on a discrepancytype principle is proposed and justified mathematically. The results of two numerical experiments are presented. They show that the proposed version of DSM is numerically efficient. The...
متن کاملCorrectors for Some Nonlinear Monotone Operators
In this paper we study homogenization of quasi-linear partial differential equations of the form −div (a (x, x/εh, Duh)) = fh on Ω with Dirichlet boundary conditions. Here the sequence (εh) tends to 0 as h → ∞ and the map a (x, y, ξ) is periodic in y, monotone in ξ and satisfies suitable continuity conditions. We prove that uh → u weakly in W 1,p 0 (Ω) as h → ∞, where u is the solution of a hom...
متن کاملNonlinear analysis: Theory, Methods and Applications, A discrepancy principle for equations with monotone continuous operators
A discrepancy principle for solving nonlinear equations with monotone operators given noisy data is formulated. The existence and uniqueness of the corresponding regularization parameter a(δ) is proved. Convergence of the solution obtained by the discrepancy principle is justified. The results are obtained under natural assumptions on the nonlinear operator. MSC: 47J05, 47J06, 47J35, 65R30
متن کاملExistence and Uniqueness of Solutions to Nonlinear Evolution Equations with Locally Monotone Operators
In this paper we establish the existence and uniqueness of solutions for nonlinear evolution equations on Banach space with locally monotone operators, which is a generalization of the classical result by J.L. Lions for monotone operators. In particular, we show that local monotonicity implies the pseudo-monotonicity. The main result is applied to various types of PDE such as reaction-diffusion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1979
ISSN: 0022-247X
DOI: 10.1016/0022-247x(79)90013-1